SHARE
Facebook X Pinterest WhatsApp

Data Observability: A Modern Solution For High Data Volume

With the increase in data collection over the past two years by organizations in all industries, data observability programs are more necessary than ever.

Written By
DC
David Curry
Sep 9, 2022

CDInsights was a media partner of Eckerson Group’s recent CDO TechVent virtual event on Data Observability.

The pressure of modern data delivery to meet higher volumes, variety, and velocity of data has been turned up to 10 in the past two years, with the pandemic supercharging many industries data collection to better inform users and improve applications. 

Many organizations are attempting to collect more data with the same tools as previous generations, and are not taking advantage of new processes such as data observability. 

Without observability, an organization cannot be fully aware of broken pipelines, poor data quality, or cost-to-value. With it, organizations can study the health of enterprise data environments, apply machine learning to familiar methodologies for data quality, optimize data delivery across distributed architectures, and contribute to DataOps initiatives. 

SEE ALSO: Making the Case for a Small Data Observability Strategy

Data observability is part of a larger landscape of observability. With data observability, there are two disciplines of focus: data quality and data pipeline. Data quality observes the accuracy, completeness, and consistency of data, while data pipeline looks at resource performance, availability, and cost. 

There are three lifecycle stages for data observability. The first is validation and detection, in which the program detects patterns, anomalies, outliers, and other nodes of data. From there, the observability platform should make assessments and predictions, which can be in the form of measuring impact, correlating events, or isolating root causes. Once assessments have been made, the data can then be used to resolve issues or prevent future events from happening. “Your number one goal is to prevent issues affecting customers. That involves fast resolution and proactive identification,” said Kevin Petrie, VP of research at Eckerson Group at the CDO TechVent virtual event on Data Observability. 

Some of the key success factors are establishing a strategic plan at the start of the project, with a capable data leader who is able to build a cross-functioning team to build the data observability program. The team must identify key control points within the data pipeline that make the most sense to check quality and risk. This can reduce bottlenecks and other issues with data quality and data pipeline checks in the future.  

“There’s a lot of enthusiasm about tools, about the ways in which anomaly detection machine learning algorithms are helping to adapt to this new world where you have cloud-driven, digital transformation-driven environments which need a lot more to track,” said Petrie. “But, you also need people and process and that’s an overriding factor as a success factor in data observability.”

Culture also plays an important factor in the success of a data observability project. “If you have smart people and they know what they’re doing and understand the data, that is great, but they also need to be empowered to make those decisions and that’s where the culture question comes in,” said Laura Sebastian-Coleman, data quality director at Prudential Financial. “Organizations that want to make the most of their data and get value from it need to also trust their people and fund how that data will be improved. That’s why it’s important while adopting these tools that the organization has clear governance over how to use the findings and who will make decisions.”  

There are a lot of benefits of implementing a fully-functioning data observability program, including improved business agility, efficiency, and productivity, alongside reduced security risk and more data uptime. All factors which can lead to competitive edge, improved hiring, and increased revenue generation. 

Watch the event replay here.

DC

David is a technology writer with several years experience covering all aspects of IoT, from technology to networks to security.

Recommended for you...

How Secrets Management Reduces Cloud Security Risks
Mastering the Data Lifecycle with Data First Modernization
Unveiling the Power of Real-Time Data
How to Use AI/ML to Accomplish Cybersecurity in the Real World

Featured Resources from RT Insights

In the Race for Speed, Is Semantic Layer the Supply Chain’s Biggest Blind Spot?
Sajal Rastogi
Jan 25, 2026
The Manual Migration Trap: Why 70% of Data Warehouse Modernization Projects Exceed Budget or Fail
The Difficult Reality of Implementing Zero Trust Networking
Misbah Rehman
Jan 6, 2026
Cloud Evolution 2026: Strategic Imperatives for Chief Data Officers
Cloud Data Insights Logo

Cloud Data Insights is a blog that provides insights into the latest trends and developments in the cloud data space. We cover topics related to cloud data management, data analytics, data engineering, and data science.

Property of TechnologyAdvice. © 2026 TechnologyAdvice. All Rights Reserved

Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.