Data masking is one technique companies can use to balance IoT security needs with data usability. Read more to find out where it fits.

The adoption of the Internet of Things has created an interconnected digital landscape. This is great for companies because everything from delivering seamless customer experiences to managing vast distributed systems is easier. One thing that’s also easier? Getting access to sensitive data. Profound interconnectedness means devices continuously collect, transmit, and store data, much of which needs to remain confidential. Enter data masking — a technique that camouflages sensitive information while retaining its authenticity.
Let’s explore the critical role of data masking in the world of IoT, its significance, and the promise it holds in safeguarding a connected future.
See also: How to Make the Invisible Serverless Threat Landscape Visible
Data masking is the process of disguising original data to protect sensitive information while maintaining the data’s authenticity and usability. This differs from other techniques.
Synthetic data is generated to simulate the patterns of real-world data without corresponding to any actual event or individual. Data masking alters real data to create a sanitized version for non-secure environments. Synthetic data can be excellent for preserving privacy, especially in situations like GDPR or HIPAA, because the data does not correspond to any real source; there’s nothing to steal. However, it is resource intensive to generate and requires sophisticated models and domain knowledge.
Data encryption converts data into unreadable code, offering strong protection during data transmission. Data masking may not inherently secure the data during transmission and could be reverse engineered. However, data encryption comes with challenges, including performance overheads and potential inefficiencies on low-power devices. The IoT domain may trend towards a hybrid approach to safeguard across the data lifecycle.
Data anonymization removes any classified, sensitive, or personal information from datasets. However, this transformation can sometimes strip away critical insights and may hint at patterns if not done correctly. Data masking provides a realistic but non-sensitive environment by adjusting specific data entries.
Data masking in the IoT realm is important in several key ways.
Data masking is one viable solution to help address several challenges inherent in IoT ecosystems.
Implementing data masking effectively requires a combination of strategies and best practices. Here are some data masking best practices to ensure optimal data security:
Data masking can bridge the gap between the need for data protection and the requirement for usability. By adhering to data masking best practices, organizations can bolster defenses against potential breaches and misuse but still harness the full utility of their data sets.
Property of TechnologyAdvice. © 2026 TechnologyAdvice. All Rights Reserved
Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.